

Applied machine learning

Sustainable formulation and battery development using machine learning

Dr Tom Whitehead 26th April 2023

Introducing Intellegens

Applied machine learning

• Key use cases: Chemicals, Materials, Life Sciences, Manufacturing Processes Optimise products and processes

Save time and cost in experiment

- Innovative method extracts value from sparse, noisy data to solve complex, high-dimensional problems
- Strong focus on ease-of-deployment for immediate ROI

Confidential

- The sustainability challenge for formulation chemistry
- ML for formulation development
- Case study: machine learning-driven battery development

The sustainability challenge for chemistry

Ī,

Driver	Technical objectives and constraints	
Consumption	Minimise energy required for processing Minimise raw materials	
Sustainability	Minimise carbon footprint of ingredients and processing Maximise use of recycled feedstock	
Supply chains	Identify alternative materials	

The sustainability challenge for chemistry

Driver	Technical objectives and constraints
Consumption	Minimise energy required for processing Minimise raw materials
Sustainability	Minimise carbon footprint of ingredients and processing Maximise use of recycled feedstock
Supply chains	Identify alternative materials
Regulations	Minimise toxicity Avoid use of restricted substances

The sustainability challenge for chemistry

D,

Driver	Technical objectives and constraints
Consumption	Minimise energy required for processing Minimise raw materials
Sustainability	Minimise carbon footprint of ingredients and processing Maximise use of recycled feedstock
Supply chains	Identify alternative materials
Regulations	Minimise toxicity Avoid use of restricted substances
Competitiveness	Maximise 'performance' Meet market requirements Minimise time-to-market

"[T]he chemical industry is possibly the most integrated one. As much as 96 percent of everything that is produced needs chemicals"

Jan Secher, CEO of Perstorp, in Politico

"[T]he chemical industry is possibly the most integrated one. As much as 96 percent of everything that is produced needs chemicals, which means that, when chemical products become more sustainable, there is a huge multiplier effect."

Jan Secher, CEO of Perstorp, in Politico

The trillion \$ formulation problem

Polymers, chemicals, pharmaceuticals, alloys, foods, paints, cosmetics...

High reliance on costly, timeconsuming experiment

How do you solve a problem like formulation design?

Try every possible formulation

Guaranteed to find the best formulation

- May be infinitely many possibilities
- Budgets / timescales are finite

How do you solve a problem like formulation design?

How do you solve a problem like formulation design?

Confidential

intellegens.com

Adaptive Experimental Design

Machine learning-driven Adaptive Experimental Design

 \checkmark

 \checkmark

Natively handle 100s or 1000s of variables

for successful materials

Target-driven: actively search

 \checkmark

No statistical or ML knowledge needed

Confidential

Alchemite™ technology offers a unique combination

Get value from sparse, noisy data

Unique self-consistent, iterative algorithm imputes sparse data

Optimise against multiple targets

Solves high-dimensional problems that were intractable

Quantify uncertainty to enable rational decisions

Handle sparse, noisy,

complex data

Accurate method (nonparametric probability distributions)

 \gg

Make a fast start

Auto-generates models, requiring minimal assumptions

к л И У

Speed and scalability

Light CPU / memory footprint: fast and works for huge datasets

A ready-to-use solution

A global view

E.g., ingredients *and* processing parameters in a combined study

How can machine learning help me?

How can machine learning help me?

Alchemite™ feature

Data analysis	Understand your data & your formulations	Analytics
Screen experiments	Virtual experiments - 'Which of my many ideas should I prioritize and why?'	Predict

How can machine learning help me?

Alchemite™ feature

Data analysis	Understand your data & your formulations	Analytics
Screen experiments	Virtual experiments - 'Which of my many ideas should I prioritize and why?'	Predict
Suggest experiments	'What new formulation space could I explore?' List of potential experiments	Improve Model

Confidential

Successful applications

Design of an aero alloy

Multi-million \$ savings in

discovery of new alloy

Ink reformulation

Cut experimental timescales from months to minutes

Drug discovery

Predict pharmacokinetics to improve compound selection

Component design

Validating Alchemite[™] for advanced engineering at NASA

Sodium-ion batteries

Focus experiment to explore a daunting parameter space

Flavours and fragrances

Predict the sensory properties of compounds

Battery formulation and manufacturing optimization

i

- Optimization of lithium-ion graphite-based electrodes
- Formulation and manufacturing protocols both have large impact on eventual performance
 - Difficult to uncouple

Cell Reports Physical Science 2, 100683 (2021)

Predicting discharge performance

- Alchemite[™] model trained on 85 cells
- Tested against cells generated after training data collected, with different manufacturing processes
- Good qualitative and quantitative agreement between model and predictions

Electrode optimization

- j
- High specific capacity (D30>150 mA.h/g) only achieved for cells with low active mass (<20 mg) and thickness (<100 µm) in existing cells
 - Faster lithiation and delithiation
- For high-energy-density applications we need improved areal capacity

Electrode optimization

j

- Alchemite[™] proposed cell with lower carbon black, reducing binder requirement and increasing graphite content
- Alchemite[™] predictions (▲) confirmed by experiment (▲)
- **2.5x** higher D30 (152 mA.h/g) than cells with similar active mass

Other properties

- Internal resistance of cell gives clues to mechanism
- Alchemite[™] able to predict all experimental properties simultaneously: analyse mechanism without running all experiments

Acknowledgements

• Intellegens

- Gareth Conduit
- Robert Parini

Ansys

- Paul MacDonald
- Guanmei Wang
- Alexandru Cazacu

• University of Birmingham

- Stavros Drakopoulos
- Azarmidokht Gholamipour-Shirazi
- Carl Reynolds
- David Burnett
- Ben Pye
- Kieran O'Regan
- Emma Kendrick

Cell Reports Physical Science 2, 100683 (2021)

tom@intellegens.com

intellegens.com in /company/intellegensai

Next Intellegens webinar – 23rd May featuring CPI

SUBSCRIBE for monthly newsletter and webinar alerts

intellegens.com/subscribe

Confidential